
Shelby Hubick, Principal Architect
Timothy Yeh, Product Manager

Use SLDS Best Practices
to Opt In to Enhanced
Lightning UI

Product Manager
Timothy Yeh

Principle Engineering Architect
Shelby Hubick

Forward Looking Statements

This presentation contains forward-looking statements about, among other things, trend analyses
and statements regarding future events, anticipated growth and industry prospects, and our strategies,
expectation or plans regarding product releases and enhancements. The achievement or success of the
matters covered by such forward-looking statements involves risks, uncertainties and assumptions. If any
such risks or uncertainties materialize or if any of the assumptions prove incorrect, results or outcomes
could differ materially from those expressed or implied by these forward-looking statements. The risks
and uncertainties referred to above include those factors discussed in Salesforce's reports filed from time
to time with the Securities and Exchange Commission, including, but not limited to: our ability to meet
the expectations of our customers; uncertainties regarding Al technologies and its integration into our
product offerings; the effect of evolving domestic and foreign government regulations; regulatory
developments and regulatory investigations involving us or affecting our industry; our ability to
successfully introduce new services and product features; our ability to execute our business plans; the
pace of change and innovation in enterprise cloud computing services; and our ability to maintain and
enhance our brands.

Last updated: April 25, 2024

● Overview of new design for Lightning

● Salesforce Lightning Design System 2

● Developer best practices

● Tooling: SLDS Validator

Agenda

Goals for Today’s Session

Create Better Looking UI Create More Reliable AppsReduce Tech Debt

A Common Salesforce Journey

Sa
le

s
Pl

at
fo

rm

Service

 Slack

Marketing

Commerce

Many Years of Customizations

Improves navigation, ease of use, and accessibility.

Introduces new colors, icons, borders, typography, and more.

Has clearer indicators of success and prioritization.

For Lightning UI
New Design

Availability by Edition
New and Existing Starter Orgs | GA Today

New Sales Professional and Enterprise Orgs | GA Today

All Other Orgs | Coming Soon!

+

SLDS
SLDS 2

Same HTML as SLDS

Same CSS Classes as SLDS

Uses New Styling Hook API

Enhanced Theming and Branding

Salesforce Lightning Design System 2 (SLDS 2)
The next evolution of SLDS is coming soon

What Are Styling Hooks?

CSS Custom Properties are

variables in CSS that allow

you to store values like colors,

fonts, sizes, and more, which

can be reused throughout

your stylesheet.

Styling Hooks are CSS

Variables (Custom

Properties) which store

values like colors, fonts, sizes,

and all of the other styles

associated with the new

design.

Say Yes! To the Power of Styling Hooks Wed 2:30pm

https://reg.salesforce.com/flow/plus/df24/sessioncatalog/page/catalog/session/1722264970315001v3ZP?

Differences Between SLDS and SLDS 2
SLDS 2 streamlines by using styling hooks

same slds class
different property values

slds-button_brand

SLDS 2
#066afe

SLDS
#1b96ffsame styling hook

different values

--slds-g-color-accent-1

white;
#CCCCCC;
1px solid;
var(--slds-g-color-border-base-1);
t(spacingMedium);
rgba(0, 0, 0, 0.1) 0px 2px 2px 0px;
var(--sds-g-font-size-base);
var(--lwc-varSpacingMedium, 1rem);

● Composable CSS
● New, streamlined styling hook architecture
● Enhanced theming and customization capabilities

● Flexible CSS
● Mix of hard coded values, design tokens, and

limited styling hooks
● Limited theming and customization capabilities

SLDS Using Design Tokens and Hard
Coded Values

SLDS 2 Using Styling Hook Values

How Best to Use SLDS?

2 3

To author and customize experiences

1

Use SLDS Blueprints

Accessible HTML/CSS for faster and
flexible development.

Use Lightning Base
Components
Best practices built inside:
accessibility, branding, security and
more.

Use Styling Hooks

Powers theming and branding, and
powers advanced customizations.

Best Practices Bird’s Eye View

Avoid hard-coded valuesUpgrade your styling API

Replace --sds- with --slds- hooks Avoid relying on a specific DOM
structure

Be wary of !important

Replace deprecated dash-dash BEM
selectors

Just say NO to styling SLDS classes

Prefer the new global styling hooks Use fallbacks to support backwards
compatibility

SLDS Developer Best Practices

1 2 3

And many more…

https://www.lightningdesignsystem.com/dev-guidelines/best-practices/
https://www.lightningdesignsystem.com/dev-guidelines/best-practices/

Best Practice: Upgrade Your Styling API

--lwc / Aura design tokens new styling hooks

/* --sds styling hook example */
.THIS .myClass {
 background: var(--sds-g-color-surface-container-1);
}

DETERMINE CONTEXT

Are you styling a button, card or a tab, is this a border or
background or a hover state. The design token name can help
with this too, but can sometimes be misleading or abstract.

ELEMENT: CARD

STYLE: BACKGROUND

VALUE: #ffffff (white)

Step 1 of 4

STEP-BY-STEP GUIDE

Best Practice: Upgrade Your Styling API

ELEMENT: CARD

STYLE: BACKGROUND

VALUE: #ffffff (white)

FIND CLOSEST CONTEXT MATCH

With context, find the global semantic hook that has the
closest semantic match to the one you're replacing.

--slds-g-color-surface-container-1 #ffffff

Step 2 of 4

Global Styling Hooks Guidance

STEP-BY-STEP GUIDE

Best Practice: Upgrade Your Styling API

https://www.lightningdesignsystem.com/platforms/lightning/new-global-styling-hooks-guidance/

FIND CLOSEST VALUE MATCH

With context, find the global semantic hook that has the
closest value match to the value that you're replacing.

ELEMENT: CARD

STYLE: BACKGROUND

VALUE: #ffffff (white)

--slds-g-color-surface-container-1 #ffffff

Step 3 of 4

Global Styling Hooks Guidance

STEP-BY-STEP GUIDE

Best Practice: Upgrade Your Styling API

https://www.lightningdesignsystem.com/platforms/lightning/new-global-styling-hooks-guidance/

ELEMENT: CARD

STYLE: BACKGROUND

VALUE: #fff

--slds-g-color-surface-container-1 #ffffff

APPLY FIX WITH FALLBACK

Lastly, take the output styling hook and prepend it to your CSS
rule, but don’t remove the old hook to help with backwards
compatibility.

/* design token to slds styling hook example */
.THIS .myClass {
 background: var(--slds-g-color-surface-container-1, t(cardColorBackground), #fff);
}

Step 4 of 4

STEP-BY-STEP GUIDE

Best Practice: Upgrade Your Styling API

Best Practice: Avoid Hard-Coded Values

CLICK ME CLICK ME
Nothing to see
here… literally

Fig 1.2: Hard-coded ducky, in a dynamic themeable duck-system

/* --hard coded value example */
.myClass {
 background: #ffffff; /white*/
}

Best Practice: Avoid Hard-Coded Values

DETERMINE CONTEXT

Are you styling a button, card, or tab? Is this a border or background
or a hover state?

Step 1 of 4

FIND CLOSEST CONTEXT MATCH

With context, find the global semantic hook that has the closest
semantic match to the one you're replacing.

Step 2 of 4

FIND CLOSEST VALUE MATCH

With context, find the global semantic hook that has the closest
value match to the value that you're replacing.

Step 3 of 4

background-color:
color:
border-color:
border-radius:
box-shadow:
fill:
font-size:
font-weight:
padding:

CSS TYPES TO FOCUS ON

/* --hard coded value example */
.myClass {
 background: #ffffff; /white*/
}

ELEMENT: CARD

STYLE: BACKGROUND

VALUE: #fff

--slds-g-color-surface-container-1 #ffffff

APPLY FIX WITH FALLBACK

Lastly, take the output styling hook and prepend it to your CSS
rule, but don’t remove the old hook to help with backwards
compatibility.

Step 4 of 4

Best Practice: Avoid Hard-Coded Values

/* hard coded value example */
.myClass {
 background: var(--slds-g-color-surface-container-1,#ffffff)
}

/* --hard coded value example */
.myClass {
 background: #ffffff; /white*/
}

Best Practice: Just Say NO to Styling SLDS Classes

/* --styling slds class example */
.slds-button {
 border-radius: 1rem;
}

Fig 1.3 “Generate me an image of Astro saying no to styling SLDS classes’

Avoid relying on internal
DOM structure and SLDS
classes.

Best Practice: Just Say NO to Styling SLDS Classes

/* --styling slds class example */
.slds-button {
 border-radius: 1rem;
}

.myClass {
 border-radius: 1rem;
}

// using SLDS blueprint
<button class=”slds-button myClass”></button>

// using Lightning Base Component
<lightning-button … class=”myClass”></lightning-button>

.myClass {
 --slds-c-button-radius-border: 1rem;
}

// using SLDS blueprint
<button class=”slds-button myClass”></button>

// using Lightning Base Component
<lightning-button … class=”myClass”></lightning-button>

OPTION 1: USE CUSTOM CLASS ✓

OPTION 2: USE STYLING HOOK✓

SLDS Validator
IMPROVED SLDS VALIDATION & RECOMMENDATIONS

New bulk reporting feature

New SLDS 2 (Beta) Rules

Many more updates

Improved recommendations

JUST UPDATED!

SLDS Validator

New Bulk Reporting Feature

Scans all your Aura/LWC
components

Generates a SARIF file format
(requires a SARIF viewer plugin)

Includes all warnings with
recommendations to refactor

SLDS Validator

Validator + Hard-Coded Value Example

New Design Site
The main page for all things
related to the new design.

SLDS Best Practices SLDS Validator
Tooling to make following best

practices easier.

Find Everything on lightningdesignsystem.com

Best practices to follow when
developing in SLDS or SLDS 2.

● Learn about the new design

● Explore designer & developer best

practices & tools

● Stay up to speed with availability

plans

Find Everything on lightningdesignsystem.com

Today’s Takeaways

Following best practices will ensure
seamless adoption of the new design and
other future enhancements.

1

Use Lightning Base Components and
customize with styling hooks. Avoid
hard-coded values and styling SLDS classes

2

Use SLDS Validator to help you follow best
practices when coding custom UI.3

 Thank you

Coffee on us.
The first 4,000 attendees to provide feedback on this
event will receive a $5 Starbucks gi card.

*Restrictions apply. See rules at sforce.co/survey-terms

Open the Salesforce Events mobile app.

Navigate to My Event.

Select My Surveys.

Complete four Session Surveys and
present the completed Event Survey
page at Badge Pickup to redeem.*

